Answer on Question \#46893-Physics-Mechanics-Kinematics-Dynamics

A car of mass 1000 kg negotiates a banked curve of radius 90 m on a fictionless road. If the banking angle is 45 degree, the speed of car is
(1) $5 \mathrm{~m} / \mathrm{sec}$
(2) $10 \mathrm{~m} / \mathrm{sec}$
(3) $20 \mathrm{~m} / \mathrm{sec}$
(4) $30 \mathrm{~m} / \mathrm{sec}$

Solution

Radius of curve is $r=90 \mathrm{~m}$.
Banking angle is $\theta=45^{\circ}$.
Free-fall acceleration is $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
No friction speed is

From the free-body diagram for the car:

$$
\begin{gathered}
F_{n e t}=F_{\text {centripetal }} \\
m g \tan \theta=\frac{m v^{2}}{r} \\
v=\sqrt{r g \tan \theta}=\sqrt{90 \cdot 10 \tan 45}=30 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Answer: (4) $30 \frac{\mathrm{~m}}{\mathrm{~s}}$.

