Answer on Question #46873 - Physics - Other

Question.

Find the vector product $\vec{a} \times \vec{b}$. If $\vec{a} = \vec{i} + 2\vec{j} - \vec{k}$ and $\vec{b} = 2\vec{i} + 3\vec{j} + \vec{k}$

$$5\vec{i} - 3\vec{j} - \vec{k}$$

$$2\vec{i} - 4\vec{j} - \vec{k}$$

$$3\vec{i} + \vec{j} - \vec{k}$$

$$\vec{i} - \vec{j} + 3\vec{k}$$

Solution.

Let write the coordinates of vectors in our basis:

$$\vec{a} = (1; 2; -1)$$

$$\vec{b} = (2; 3; 1)$$

By definition we can find the vector product as the determinant of the following matrix:

$$ec{a} imesec{b}=egin{array}{ccc} ec{t} & ec{j} & ec{k}\ a_i & a_j & a_k\ b_i & b_j & b_k \ \end{array}$$
 , where

 a_i , a_j , a_k are the components of vector \vec{a} ;

 b_i , b_j , b_k are the components of vector \vec{b} .

So, calculate the vector product:

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ 2 & 3 & 1 \end{vmatrix} = \vec{i}(2+3) + \vec{j}(-2-1) + \vec{k}(3-4) = 5\vec{i} - 3\vec{j} - \vec{k}$$

Answer.

$$5\vec{i} - 3\vec{j} - \vec{k}$$