Answer on Question \#46873 - Physics - Other

Question.

Find the vector product $\vec{a} \times \vec{b}$. If $\vec{a}=\vec{\imath}+2 \vec{\jmath}-\vec{k}$ and $\vec{b}=2 \vec{\imath}+3 \vec{\jmath}+\vec{k}$
$5 \vec{\imath}-3 \vec{\jmath}-\vec{k}$
$2 \vec{\imath}-4 \vec{j}-\vec{k}$
$3 \vec{\imath}+\vec{\jmath}-\vec{k}$
$\vec{\imath}-\vec{\jmath}+3 \vec{k}$

Solution.

Let write the coordinates of vectors in our basis:
$\vec{a}=(1 ; 2 ;-1)$
$\vec{b}=(2 ; 3 ; 1)$
By definition we can find the vector product as the determinant of the following matrix:

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{l} & \vec{j} & \vec{k} \\
a_{i} & a_{j} & a_{k} \\
b_{i} & b_{j} & b_{k}
\end{array}\right| \text {,where }
$$

a_{i}, a_{j}, a_{k} are the components of vector \vec{a};
b_{i}, b_{j}, b_{k} are the components of vector \vec{b}.

So, calculate the vector product:
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 2 & -1 \\ 2 & 3 & 1\end{array}\right|=\vec{\imath}(2+3)+\vec{\jmath}(-2-1)+\vec{k}(3-4)=5 \vec{\imath}-3 \vec{\jmath}-\vec{k}$

Answer.

$5 \vec{\imath}-3 \vec{\jmath}-\vec{k}$

