Answer on Question \#46835, Physics, Mechanics | Kinematics | Dynamics

A particle moves according to the position function $x(t)=c t^{\wedge} 2+b t$, with $c=2 m / s$ and $b=-5 m / s$. Find the acceleration and velocity when the particle is at the origin.

Solution:

The kinematics equation is:

$$
x t=x_{0}+v_{0} t+\frac{a t^{2}}{2}
$$

where x_{0} is the initial position, v_{0} is the initial velocity and a is the acceleration.
From given we have

$$
x t=c t^{2}+b t=2 t^{2}-5 t
$$

Thus, from comparing two equations we have

$$
\begin{gathered}
x_{0}=0 \\
v_{0}=-5 \mathrm{~m} / \mathrm{s} \\
a=4 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Answer: $a=4 \mathrm{~m} / \mathrm{s}^{2}, v_{0}=-5 \mathrm{~m} / \mathrm{s}$.

