Answer on Question \#46810, Physics, Mechanics | Kinematics |

Dynamics

Question:

A force F acts tangentially at top of a solid sphere of mass M kept on rough horizontal plane. If sphere rolls without slipping, acceleration of its center is: (10F/7M is answer. But dont know how. Please help.)

Answer:

If sphere rolls without slipping:

$$
\beta=\frac{a}{R}
$$

where β is angular acceleration, a is acceleration of center of the sphere.
Newton's laws of motion:

$$
\begin{gathered}
\left(F+F_{f r}\right) R=I \beta \\
F-F_{f r}=m a
\end{gathered}
$$

where $F_{f r}$ is force of friction, I is moment of inertia (for solid sphere $I=\frac{2}{5} m R^{2}$)
Assuming $\beta=\frac{a}{R}$:

$$
\begin{gathered}
\left(F+F_{f r}\right)=\frac{I}{R^{2}} a \\
F-F_{f r}=m a
\end{gathered}
$$

Therefore:

$$
\begin{gathered}
2 F=\frac{I}{R^{2}} a+m a \\
a=\frac{2 F}{\frac{I}{R^{2}}+m}=\frac{2 F}{\frac{2}{5} m+m}=\frac{10 F}{7 m}
\end{gathered}
$$

Answer: $\frac{10 F}{7 m}$
http://www.AssignmentExpert.com/

