Answer on Question \#46806-Physics-Mechanics-Kinematics-Dynamics

Represent the given velocity $v=230 \frac{\mathrm{~km}}{\mathrm{~h}}$ in the direction $\alpha=200$ degrees.

Solution

The vector \bar{v} is shown in the following figure:

We should find coordinates $\left(v_{x} ; v_{y}\right)$ of its end. By definition

$$
v_{x}=v \cos \alpha ; v_{y}=v \sin \alpha .
$$

Substituting values we get

$$
\begin{gathered}
v_{x}=230 \cdot \cos 200=-216.13 \frac{\mathrm{~km}}{\mathrm{~h}} \\
v_{y}=230 \cdot \sin 200=-78.67 \frac{\mathrm{~km}}{\mathrm{~h}}
\end{gathered}
$$

Thus $\bar{v}=\left(-216.13 \frac{\mathrm{~km}}{\mathrm{~h}} ;-78.67\right) \frac{\mathrm{km}}{\mathrm{h}}$.

