Answer on Question \#46722, Physics, Other

Task:

Two resistances 2Ω and 3Ω are in parallel. The combination is in series with 1.5Ω resistance and a power supply of voltage V . There is a current of 3 A through the 2Ω resistance. What are the values of the current I delivered by, and the voltage V across the power supply?

- 3 A and 10.5 V
- 4A and 9V
- 4 A and 12 V
- 12A and 18 V

Answer:

The voltage across the resistor with resistance 2Ω :
Ohm's law: $\mathrm{I}_{1}=\mathrm{U}_{1} / \mathrm{R}_{1} ; \quad \mathrm{U}_{1}=\mathrm{R}_{1} * \mathrm{I}_{1}=6 \mathrm{~V}$
Because the resistance connected in parallel, they have the same voltage:

$$
\begin{aligned}
& \mathrm{U}_{1}=\mathrm{U}_{2}=6 \mathrm{~V} \\
& \mathrm{I}_{2}=\mathrm{U}_{2} / \mathrm{R}_{2}=6 \mathrm{~V} / 3 \Omega=2 \mathrm{~A}
\end{aligned}
$$

The total current in the circuit - the sum of the currents through the two resistances R_{1} and R_{2} :

$$
\begin{aligned}
& \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=2 \mathrm{~A}+3 \mathrm{~A}=5 \mathrm{~A} \\
& \mathrm{U}_{3}=\mathrm{I} * \mathrm{R}_{3}=5 \mathrm{~A} * 1.5 \Omega=7.5 \mathrm{~V}
\end{aligned}
$$

The voltage across the power supply:

$$
U_{\text {power }}=U_{3}+U_{1}=7.5 \mathrm{~V}+6 \mathrm{~V}=13.5 \mathrm{~V}
$$

So, answer: 5 A and 13.5 V

