Answer on Question #46722, Physics, Other

Task:

Two resistances 2Ω and 3Ω are in parallel. The combination is in series with 1.5Ω resistance and a power supply of voltage V. There is a current of 3A through the 2Ω resistance. What are the values of the current I delivered by, and the voltage V across the power supply?

- 3A and 10.5V
- 4A and 9V
- 4A and 12V
- 12A and 18V

Answer:

The voltage across the resistor with resistance 2Ω :

Ohm's law: $I_1 = U_1/R_1$; $U_1 = R_1 * I_1 = 6V$

Because the resistance connected in parallel, they have the same voltage:

 $U_1 = U_2 = 6V$

 $I_2 = U_2/R_2 = 6V/3\Omega = 2A$

The total current in the circuit - the sum of the currents through the two resistances R_1 and R_2 :

 $I = I_1 + I_2 = 2A + 3A = 5A$

 $U_3 = I * R_3 = 5A * 1.5\Omega = 7.5V$

The voltage across the power supply:

 $U_{power} = U_3 + U_1 = 7.5V + 6V = 13.5V$

So,answer: 5A and 13.5V

http://www.AssignmentExpert.com/