Answer on Question \#46721, Physics, Other

Question:

Two wires P ad Q, each of the same length and same material, are connected in parallel to a battery. The diameter of P is half that of Q. What fraction of the total current passes through P?
0.2
0.25
0.33
0.5

Answer:

The resistance R of a conductor of uniform cross section, therefore, can be computed as

$$
R=\frac{\rho l}{A}
$$

where l is the length of the conductor, A is the cross-section area of the conductor, and ρ (rho) is the electrical resistivity.

Therefore:

$$
\begin{aligned}
& R_{P}=\frac{\rho l}{\pi d_{P}^{2} / 4} \\
& R_{Q}=\frac{\rho l}{\pi d_{Q}^{2} / 4}
\end{aligned}
$$

Or:

$$
\frac{R_{P}}{R_{Q}}=\frac{d_{Q}^{2}}{d_{P}^{2}}=4
$$

Voltage on P equals voltage on Q :

$$
V_{P}=V_{Q}=V
$$

Current equals:

$$
\begin{gathered}
I_{P}=\frac{U}{R_{P}} \\
I_{Q}=\frac{U}{R_{Q}}=\frac{4 U}{R_{P}}=4 I_{P}
\end{gathered}
$$

Total current:

$$
I_{t}=I_{P}+I_{Q}=5 I_{P}
$$

Fraction equals:

$$
\frac{I_{P}}{I_{t}}=\frac{I_{P}}{5 I_{P}}=\frac{1}{5}
$$

Answer: 0.2

