## Answer on Question \#46719-Physics-Other

A basketball player shot a ball. It left his hand at a height of $h_{i}=2.05 \mathrm{~m}$ above the court at an angle of $\alpha=$ 40 degrees relative to horizontal, what initial speed did the ball have if it hit "nothing but net" at the basket $x_{f}=4.50 \mathrm{~m}$ away? Assume the rim is $h_{f}=3.05 \mathrm{~m}$ above the court.

## Solution

The vertical equation of motion:

$$
h=h_{i}+v_{0} \sin \alpha t-\frac{g t^{2}}{2} .
$$

The horizontal equation of motion:

$$
x=v_{0} \cos \alpha t
$$

The final coordinates are

$$
h_{f}=h_{i}+v_{0} \sin \alpha t_{f}-\frac{g t_{f}^{2}}{2} ; x_{f}=v_{0} \cos \alpha t_{f}
$$

We have

$$
t_{f}=\frac{x_{f}}{v_{0} \cos \alpha}
$$

Then

$$
h_{f}=h_{i}+v_{0} \sin \alpha\left(\frac{x_{f}}{v_{0} \cos \alpha}\right)-\frac{g\left(\frac{x_{f}}{v_{0} \cos \alpha}\right)^{2}}{2} \rightarrow h_{f}-h_{i}=x_{f} \tan \alpha-\frac{g x_{f}^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} .
$$

The initial speed of the ball is

$$
v_{0}=\frac{x_{f}}{\cos \alpha} \sqrt{\frac{g}{2\left(x_{f} \tan \alpha-h_{f}+h_{i}\right)}}=\frac{4.50}{\cos 40} \sqrt{\frac{9.81}{2(4.50 \tan 40-3.05+2.05)}}=7.81 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: $7.81 \frac{\mathrm{~m}}{\mathrm{~s}}$.

