Question \#46581 - Physics - Mechanics | Kinematics | Dynamics

High-speed test vehicle is brought to rest by throwing out a drag chute behind it, causing a constant acceleration of $-13 \mathrm{~m} / \mathrm{s} 2$. The vehicle has a velocity of $56 \mathrm{~m} / \mathrm{s}$ when the chute is deployed. What is the minimum length of track needed for this process?

Solution:

The vehicle moves with constant acceleration in a straight line.

Equations of motion:

Displacement and Acceleration:
$d=v_{0} t+\frac{a t^{2}}{2}$

Velocity and Acceleration:
$v=v_{0}+a t$

Where:
$v_{0}=56 \mathrm{~m} / \mathrm{s}$
$a=-13 \mathrm{~m} / \mathrm{s}^{2}$

To find the distance, we find the time which the vehicle was moving
When the vehicle stops speed becomes equal to 0 , so $v=0$
$0=56-13 t$
$t=\frac{56}{13} s=4.31 s$
$d=56 \cdot 4.31-\frac{13 \cdot 4.31^{2}}{2}=120.6 \mathrm{~m}$

Answer: the minimum track length should be 121 m.

