Answer on Question \#46530, Physics, Mechanics | Kinematics | Dynamics

Question:

A cubic box of volume $6.15 \times 10-2 \mathrm{~m} 3$ is filled with air at atmospheric pressure at 15 C . The box is closed and heated to 185 C . What is the net force on each side of the box?

Answer:

Net force on each side of the box equals:

$$
F=\left(P-P_{a}\right) A
$$

where P_{a} is atmospheric pressure, P is pressure in the box, A is area of the side.
The ideal gas law:

$$
P V=n R T
$$

where P is the absolute pressure of the gas, V is the volume of the gas, n is the amount of substance of gas (measured in moles), R is the ideal, or universal, gas constant, and T is the absolute temperature of the gas.

For initial and final states:

$$
\begin{aligned}
P_{a} V & =n R T_{0} \\
P V & =n R T_{1}
\end{aligned}
$$

Therefore:

$$
P=P_{a} \frac{T_{1}}{T_{0}}
$$

Area of the side equals:

$$
A=a^{2}
$$

where a is length of the side. Assuming $V=a^{3}$:

$$
A=V^{\frac{2}{3}}
$$

Therefore:

$$
F=P_{a}\left(\frac{T_{1}}{T_{0}}-1\right) V^{\frac{2}{3}}=9320 \mathrm{~N}
$$

Answer: 9320 N
http://www.AssignmentExpert.com/

