Answer on Question \#46529, Physics, Mechanics | Kinematics | Dynamics

Question:

A helium-filled balloon escapes a child's hand at sea level and 20.0C. When it reaches an altitude of 3600 , where the temperature is 5.0 C and the pressure only 0.68 atm, how will its volume compare to that at sea level?

Answer:

The ideal gas law:

$$
P V=n R T
$$

where P is the absolute pressure of the gas, V is the volume of the gas, n is the amount of substance of gas (measured in moles), R is the ideal, or universal, gas constant, and T is the absolute temperature of the gas.

For initial and final states:

$$
\begin{aligned}
& P_{0} V_{0}=n R T_{0} \\
& P_{1} V_{1}=n R T_{1}
\end{aligned}
$$

Therefore:

$$
\frac{V_{1}}{V_{0}}=\frac{P_{0} T_{1}}{P_{1} T_{0}}=1.4
$$

Answer: $\frac{V_{1}}{V_{0}}=1.4$

