Answer on Question \#46497, Physics, Molecular Physics

One end of a $30-\mathrm{cm}$ long aluminium rod is exposed to a temperature of 5000 C while the other end is maintained at 200 C . The rod has the diameter of 2.5 cm . If heat is conducted through the rod at the rate of $164.9 \mathrm{~J} / \mathrm{s}$, calculate the the thermal conductivity of aluminium

Solution

From the ideal gas law $P V=\frac{m}{\mu} R T$ for the density at the final state we obtain the answer:

$$
\rho_{2}=\frac{P_{2} \mu}{R T}=\frac{175 \cdot 10^{3} \mathrm{pa} \times 44 \cdot 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~mol}}}{8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 313 \mathrm{~K}}=2.96 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

