

Answer on Question #46466-Physics-Atomic Physics

Sodium metal crystallizes in the bcc structure. The metal has atomic weight 23 and density 971 kgm⁻³. Calculate the cubic lattice parameter a and the shortest distance between atoms in this structure.

Solution

For the BCC structure, the density is given by:

$$\rho = 2 \frac{\frac{M_{at}}{N_A} \left(10^{-3} \frac{kg}{g} \right)}{a^3}$$

Thus the lattice parameter a is:

$$a = \left(\frac{1}{500} \frac{M_{at}}{kg} N_A \rho \right)^{\frac{1}{3}} = \left(\frac{1}{500} \frac{(23 \frac{g}{mol})}{\frac{g}{kg} (6.022 \cdot 10^{23} mol^{-1}) \cdot 971 \frac{kg}{m^3}} \right)^{\frac{1}{3}} = 4.28 \cdot 10^{-10} m.$$

The radius of the atom, R , and the lattice parameter, a , are related.

$$R = \frac{\sqrt{3}}{4} a.$$

The shortest distance between atoms in this structure is one diameter

$$d = 2R = 2 \cdot \frac{\sqrt{3}}{4} a = \frac{\sqrt{3}}{2} a = \frac{\sqrt{3}}{2} (4.28 \cdot 10^{-10} m) = 3.71 \cdot 10^{-10} m.$$