Answer on Question \#46371 - Physics - Mechanics | Kinematics | Dynamics

Question.

At a certain time a particle had a speed of $18 \mathrm{~m} / \mathrm{s}$ in the positive x direction, and 2.4 s later it's speed was $30 \mathrm{~m} / \mathrm{s}$ in the opposite direction. What is the average acceleration of the particle during the 2.4 s interval?

Given:
$v_{0}=18 \frac{\mathrm{~m}}{\mathrm{~s}}$
$v=-30 \frac{\mathrm{~m}}{\mathrm{~s}}$
$t=2.4 \mathrm{~s}$
Find:
$a=$?

Solution.

Average acceleration is the rate at which velocity changes. Average acceleration is the change in velocity divided by an elapsed time. By definition:

$$
a=\frac{\Delta v}{\Delta t}
$$

In our case, time changes from 0 to 2.4 s . So, $\Delta t=t=2.4 \mathrm{~s}$.

$$
\Delta v=v-v_{0}
$$

Therefore,

$$
a=\frac{v-v_{0}}{t}
$$

Calculate:

$$
a=\frac{-30-18}{2.4}=-\frac{48}{2.4}=-20 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Answer.

$a=\frac{v-v_{0}}{t}=-20 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

