

Answer on Question #46368, Physics, Mechanics | Kinematics | Dynamics

Question

A particle of mass 0.01 kg is moving along the +ve x axis under influence of the force

$F(x) = -k(1/2x^2)$, where $k = 0.01 \text{ Nm}^2$. At $t=0$, it is at $x = 1 \text{ m}$ and velocity = 0.

Find the time at which it reaches $x = 0.25$.

Solution

According to Newton's second law the acceleration is produced when a force acts on a mass.

$$a = \frac{F}{m}$$

In our case, we have acceleration as a function of distance

$$a(x) = \frac{-k}{2m} x^2$$

The general definition:

$$a(x) = \frac{dv(x)}{dt} = \frac{dv(x)}{dx} \frac{dx}{dt} = \frac{dv(x)}{dx} v(x)$$

Recombine the differentials:

$$a(x)dx = v(x)dv(x)$$

Integrate both parts:

$$\int_{x_0}^x a(x)dx = \int_{v_0}^v v(x)dv(x) = \frac{v^2 - v_0^2}{2}$$

Solve for $v(x)$:

$$v(x) = \sqrt{v_0^2 + 2 \int_{x_0}^x a(x)dx}$$

Thus, in our case when $v_0 = 0$, $x_0 = 1$, $x = 0.25$

$$v(x) = \sqrt{2 \int_1^{0.25} \frac{-k}{2m} x^2 dx} = \sqrt{\frac{-k}{m} \int_1^{0.25} x^2 dx} = \sqrt{\frac{-k}{m} \left(\frac{x^3}{3} \right) \Big|_1^{0.25}}$$

So,

$$v(0.25) = \sqrt{\frac{-0.01}{0.01} \left(\frac{0.25^3}{3} - \frac{1}{3} \right)} = \sqrt{0.328125} = 0.573 \text{ m/s}$$

Now, let's find $t(x)$. We will first find its derivative:

$$\frac{dt(x)}{dx} = \frac{1}{v(x)}$$

Again, split the differentials and integrate:

$$\int_{t_0}^t dt = \int_{x_0}^x \frac{dx}{v(x)}$$

Evaluate the leftmost integral:

$$t = t_0 + \int_{x_0}^x \frac{dx}{\sqrt{v_0^2 + 2 \int_{x_0}^x a(x) dx}}$$

Thus,

$$t = \int_0^{0.25} \frac{dx}{0.573} = \frac{0.25}{0.573} = 0.436 s$$

Answer: $t = 0.436 s$