Answer on Question\#46350, Physics, Other

Given a refractive index and angle of incidence, it is easy to find the angle of refraction using Snell's law:

$$
n_{1} \sin \alpha_{1}=n_{2} \sin \alpha_{2},
$$

where α_{1} is the angle of incidence, α_{2} is the angle of refraction, n_{1}, n_{2} are refractive indexes of corresponding substances (light goes from substance one to substance two). For glass, $n=1.5$ (in this case $n_{2}=1.5, n_{1}=1$).
Hence, $\quad \alpha_{2}=\arcsin \left(\frac{n_{1}}{n_{2}} \sin \alpha_{1}\right)=\arcsin \left(\frac{2}{3} \sin 30 \mathrm{deg}\right) \approx 19.47 \mathrm{deg}$. Thus, the angle of refraction is 19.47 degrees, which is less than angle of incidence because glass has bigger refraction index than $\operatorname{air}\left(n_{2}>n_{1}\right)$.

