Answer on Question \#46349, Physics, Other

Task:

Which of the following is NOT true of experiments involving curved mirrors?

- image distance is negative for for real image
- object distance is positive
- image distance is negative for virtual image
- focal length is negative for convex mirrors

Solution:

A curved mirror is a mirror with a curved reflective surface, which may be either convex (bulging outward) or concave (bulging inward). Most curved mirrors have surfaces that are shaped like part of a sphere, but other shapes are sometimes used in optical devices.
The equation for image formation by rays near the optic axis (paraxial rays) of a mirror has the same form as the thin lens equation:

$$
\frac{1}{o}+\frac{1}{i}=\frac{1}{f}
$$

where $\mathrm{o}=$ object distance, $\mathrm{i}=$ image distance, $\mathrm{f}=$ focal length.
The sign conventions for the given quantities in the mirror equation are as follows:
f is + if the mirror is a concave mirror
f is - if the mirror is a convex mirror
i is $+i f$ the image is a real image and located on the object's side of the mirror.
i is - if the image is a virtual image and located behind the mirror.
If the object is outside the focal length, a concave mirror will form a real, inverted image.

A convex mirror forms a virtual image.

- image distance is negative for real image

NOT true (because, i is + if the image is a real image)

- object distance is positive

NOT true (o is negative because it is measured left from the surface, against the light direction)

- image distance is negative for virtual image

True

- focal length is negative for convex mirrors

True (f is negative for a diverging mirror)

