Answer on the question \#46324, Physics, Molecular Physics | Thermodynamics

Question:
If 1 kg of water at 20 c and 1 kg of ice at -20 c are mixed. what will the final temperature?

Answer:

The processes that take place in the system are:

1. Warming of the ice
2. Cooling of the water
3. Melting of the ice (probably, we need to calculate to elucidate it)

According to the heat capacity definition:

$$
Q=\int_{1}^{2} C d T
$$

Where 1 and 2 are initial and finish conditions of the system and C is heat capacity for the substance.
Let's write the equations for heating ice and cooling water:

$$
\begin{gathered}
Q=C_{\text {ice }} * m_{\text {ice }}\left(0-T_{1 i c e}\right)=2.11 * 1000 *(0+20)=4.22 * 10^{4} \mathrm{~J} \\
-Q=C_{\text {water }} * m_{\text {water }}\left(T_{2 \text { water }}-T_{1 \text { water }}\right),
\end{gathered}
$$

Then, $T_{2 \text { water }}$ is:

$$
T_{2 \text { water }}=T_{1 \text { water }}-\frac{Q}{C_{\text {water }} * m_{\text {water }}}=20-\frac{4.22 * 10^{4}}{4.1813 * 10^{3}}=20-10.09=9.91^{\circ} \mathrm{C}
$$

As $T_{2 \text { water }}$ is $>0^{\circ} \mathrm{C}$, the part of the ice melts.

$$
\begin{gathered}
-Q=C_{\text {water }} * m_{\text {water }}(0-9.91)=-41.42 * 10^{3} \mathrm{~J} \\
Q=\Delta H_{f u s} * m_{\text {ice }} \\
m_{\text {ice.melt }}=\frac{Q}{\Delta H_{f u s}}=\frac{41.42 * 1000}{333.55}=124.2 \mathrm{~g}
\end{gathered}
$$

Then, the part $(57 \mathrm{~g})$ of ice melts. The water and the ice are in equilibrium at $0^{\circ} \mathrm{C}$.

