Answer on Question \#46316, Physics, Mechanics | Kinematics | Dynamics

A radar station locates a sinking ship at range 15.9 km and bearing 136° clockwise from north. From the same station, a rescue plane is at horizontal range $19.6 \mathrm{~km}, 156^{\circ}$ clockwise from north, with elevation 2.05 km . (a) Write the displacement vector from plane to ship, letting i hat represent east, j hat north, and k hat bold up.

Solution:

A convenient way to specify the position of an object is with the help of a coordinate system. We choose a fixed point, called the origin and three directed lines, which pass through the origin and are perpendicular to each other. These lines are called the coordinate axes of a three-dimensional rectangular (Cartesian) coordinate system and are labeled the $x-y$-, and $z-$ axis. Three numbers with units specify the position of a point P. These numbers are the $x-, y-$, and z-coordinates of the point P. Here î, $\mathbf{\jmath}$ and \mathbf{k} are unit vectors.

Find the xyz coordinates of each object using:
$+x=$ east
$+y=$ north
$+z=$ altitude.
For ship:

$$
\begin{gathered}
x_{1}=15.9 \cdot \cos \left(136^{\circ}-90^{\circ}\right)=15.9 \cdot \cos \left(46^{\circ}\right)=11.05 \\
y_{1}=-15.9 \cdot \sin \left(136^{\circ}-90^{\circ}\right)=-15.9 \cdot \sin \left(46^{\circ}\right)=-11.44 \\
z_{1}=0
\end{gathered}
$$

For rescue plane:

$$
\begin{gathered}
x_{2}=19.6 \cdot \cos \left(156^{\circ}-90^{\circ}\right)=19.6 \cdot \cos \left(66^{\circ}\right)=7.972 \\
y_{2}=-19.6 \cdot \cos \left(156^{\circ}-90^{\circ}\right)=-19.6 \cdot \sin \left(66^{\circ}\right)=-17.91 \\
z_{2}=2.05
\end{gathered}
$$

The displacement vector d from P_{1} to P_{2} may be written as

$$
\begin{gathered}
\overrightarrow{\mathrm{d}}=\left(x_{2}-x_{1}\right) \hat{\mathbf{\imath}}+\left(y_{2}-y_{1}\right) \hat{\mathbf{\jmath}}+\left(z_{2}-z_{1}\right) \hat{\mathbf{k}} \\
\overrightarrow{\mathrm{d}}=(7.972-11.05) \hat{\mathbf{\imath}}+(-17.91+11.44) \hat{\mathbf{\jmath}}+(2.05-0) \hat{\mathbf{k}} \\
\overrightarrow{\mathrm{d}}=-3.078 \hat{\mathbf{i}}-6.47 \hat{\mathbf{\jmath}}+2.05 \hat{\mathbf{k}}
\end{gathered}
$$

Answer: $\quad \overrightarrow{\mathrm{d}}=-3.078 \hat{\mathbf{1}}-6.47 \hat{\mathbf{j}}+2.05 \hat{\mathbf{k}}$

