Answer on Question \#46140, Physics, Mechanics | Kinematics | Dynamics

You throw a rock straight upward at $30 \mathrm{~m} / \mathrm{s}$. approximately how long does it rise? How long until it stops at the top of its flight?

Solution:

Given:

$$
\begin{aligned}
& v_{0}=30 \mathrm{~m} / \mathrm{s} \\
& v_{f}=0 \\
& t=? \\
& h=?
\end{aligned}
$$

The kinematic equation that describes an object's motion is:

$$
2 g h=v_{f}^{2}-v_{0}^{2}
$$

where $g=-9.81 \mathrm{~m} / \mathrm{s}^{2}$ is acceleration, h is coordinate, v_{0} is initial velocity and v_{f} is final velocity.

Thus,

$$
h=\frac{-v_{0}^{2}}{-2 g}=\frac{30^{2}}{2 \cdot 9.81}=45.9 \mathrm{~m}
$$

The other kinematic equation is:

$$
g=\frac{v_{f}-v_{0}}{t}
$$

Thus,

$$
t=\frac{v_{f}-v_{0}}{g}=\frac{0-30}{-9.81}=3.06 \mathrm{~s} \approx 3.1 \mathrm{~s}
$$

Answer: $t=3.1 \mathrm{~s}, \quad h=45.9 \mathrm{~m}$.

