## Answer on Question \#46137, Physics, Mechanics | Kinematics | Dynamics

A car is rolling back when it hits the gas. After 8.25 s , it is moving forward at $8.62 \mathrm{~m} / \mathrm{s}$, and is 12.9 m to the right of the starting point. What was its starting velocity?

## Solution:

The kinematic equation that describes an object's motion is:

$$
x=x_{0}-v_{o} t+\frac{1}{2} a t^{2}
$$

where
$x_{0}=0$ is initial position
$v_{0}=$ ? is initial speed
$a$ is acceleration
At time $t=8.25 \mathrm{~s}$ the position of car is $x=12.9 \mathrm{~m}$.
Thus, from first equation

$$
v_{0}=\frac{a t}{2}-\frac{x}{t}
$$

The acceleration is

$$
a=\frac{v-v_{0}}{t}
$$

In our case, the initial velocity has minus sign.
Thus,

$$
a=\frac{v-\left(-v_{0}\right)}{t}=\frac{v+v_{0}}{t}
$$

Substituting

$$
v_{0}=\frac{t}{2}\left(\frac{v}{t}+\frac{v_{0}}{t}\right)-\frac{x}{t}=\frac{v}{2}+\frac{v_{0}}{2}-\frac{x}{t}
$$

Thus,

$$
\frac{v_{0}}{2}=\frac{v}{2}-\frac{x}{t}
$$

So,

$$
v_{0}=v-\frac{x}{t}=8.62-\frac{12.9}{8.25}=7.06 \mathrm{~m} / \mathrm{s}
$$

Answer: $\quad v_{0}=7.06 \mathrm{~m} / \mathrm{s}$

