Answer on Question \#46086, Physics-Mechanics-Kinematics-Dynamics

If the force field defined by vector $\vec{F}=\left(3 x^{2} y z-3 y\right) \vec{\imath}+\left(x^{3} z-3 x\right) \vec{\jmath}+\left(x^{3} y+2 z\right) \vec{k}$ conservative? if so, find the scalar potential associated with the vector F .

Solution

$$
\vec{F}=\left(3 x^{2} y z-3 y\right) \vec{\imath}+\left(x^{3} z-3 x\right) \vec{\jmath}+\left(x^{3} y+2 z\right) \vec{k}=M(x, y, z) \vec{\imath}+N(x, y, z) \vec{\jmath}+P(x, y, z) \vec{k}
$$

Then, \vec{F} is conservative if and only if

$$
\begin{gathered}
\frac{\partial P}{\partial x}=\frac{\partial M}{\partial z}, \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}, \frac{\partial P}{\partial y}=\frac{\partial N}{\partial z} . \\
\frac{\partial P}{\partial x}=\frac{\partial}{\partial x}\left(x^{3} y+2 z\right)=3 x^{2} y . \\
\frac{\partial P}{\partial y}=\frac{\partial}{\partial y}\left(x^{3} y+2 z\right)=x^{3} . \\
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(3 x^{2} y z-3 y\right)=3 x^{2} z-3 . \\
\frac{\partial M}{\partial z}=\frac{\partial}{\partial z}\left(3 x^{2} y z-3 y\right)=3 x^{2} y . \\
\frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left(x^{3} z-3 x\right)=3 x^{2} z-3 . \\
\frac{\partial N}{\partial z}=\frac{\partial}{\partial z}\left(x^{3} z-3 x\right)=x^{3} .
\end{gathered}
$$

So $\frac{\partial P}{\partial x}=\frac{\partial M}{\partial z}=3 x^{2} y, \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}=3 x^{2} z-3, \frac{\partial P}{\partial y}=\frac{\partial N}{\partial z}=x^{3}$ and the force field $\overrightarrow{\mathrm{F}}$ is conservative.
Let's find the scalar potential f associated with the vector \vec{F}

$$
\begin{gathered}
\frac{\partial f}{\partial x}=M=\left(3 x^{2} y z-3 y\right) \\
\frac{\partial f}{\partial y}=N=\left(x^{3} z-3 x\right) \\
\frac{\partial f}{\partial z}=P=\left(x^{3} y+2 z\right)
\end{gathered}
$$

If we integrate the first of the three equations with respect to x, we find that

$$
f(x, y, z)=\int\left(3 x^{2} y z-3 y\right) d x=x^{3} y z-3 y x+g(y, z)
$$

where $g(y, z)$ is a constant dependent on y and z variables. We then calculate the partial derivate with respect to y from this equation and match it with the equation of above.

$$
\frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x^{3} y z-3 y x+g(y, z)\right)=x^{3} z-3 x+\frac{\partial g}{\partial y}=\left(x^{3} z-3 x\right) .
$$

This means that the partial derivative of g with respect to y is 0 , thus eliminating y from g entirely and leaving at as a function of z alone.

$$
f(x, y, z)=x^{3} y z-3 y x+h(z) .
$$

We then repeat the process with the partial derivative with respect to z

$$
\frac{\partial f}{\partial z}=\frac{\partial}{\partial z}\left(x^{3} y z-3 y x+h(z)\right)=x^{3} y+\frac{d h}{d z}=\left(x^{3} y+2 z\right)
$$

which means that

$$
\frac{d h}{d z}=(2 z)
$$

so we can find $h(z)$ by integrating:

$$
h(z)=z^{2}+c .
$$

Therefore,

$$
f(x, y, z)=x^{3} y z-3 y x+z^{2}+c .
$$

