Answer on Question \#46033 - Physics - Electromagnetism

Question.

A copper wire has resistance of 2.0Ω at 0 CC and 2.26Ω at 30 oC . What is its resistance at50oC? Given:
$R_{1}=2 \Omega$
$T_{1}=0^{\circ} \mathrm{C}$
$R_{2}=2.26 \Omega$
$T_{2}=30^{\circ} \mathrm{C}$
$T_{3}=50^{\circ} \mathrm{C}$
Find:
$R_{3}=$?

Solution.

As we know the resistance's dependence of temperature is expressed the following:

$$
R=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right]
$$

So, we must find the temperature coefficient α :

$$
\alpha=\frac{1}{R_{0}} \frac{R-R_{0}}{T-T_{0}}
$$

We can find the temperature coefficient α for this material, because we know $R_{1}, T_{1}, R_{2}, T_{2}$:

$$
\alpha=\frac{1}{R_{1}} \frac{R_{2}-R_{1}}{T_{2}-T_{1}}
$$

Therefore, we can define the resistance at any temperature:

$$
R_{3}=R_{1}\left[1+\alpha\left(T_{3}-T_{1}\right)\right]=R_{1}\left[1+\frac{R_{2}-R_{1}}{R_{1}} \frac{T_{3}-T_{1}}{T_{2}-T_{1}}=R_{1}+\left(R_{2}-R_{1}\right) \frac{T_{3}-T_{1}}{T_{2}-T_{1}}\right.
$$

Calculate:

$$
R_{3}=2+0.26 \frac{50}{30}=2+0.433=2.433 \Omega
$$

Answer.

$R_{3}=R_{1}+\left(R_{2}-R_{1}\right) \frac{T_{3}-T_{1}}{T_{2}-T_{1}}=2.433 \Omega$

