Answer on Question \#46020 - Physics - Electromagnetism

Question.

The electron beam in a television tube consists of electrons accelerated from rest through a potential difference of about $20,000 \mathrm{~V}$. What is the speed of the electrons? (Ignore relativistic effects). Electron rest mass is $911 \times 10-31 \mathrm{~kg}$ and electronic charge is $16 \times 10-19 \mathrm{C}$.

Given:
$U=20000 \mathrm{~V}$
$m=9.11 \cdot 10^{-31} \mathrm{~kg}$
$q=1.6 \cdot 10^{-19} C$
Find:
$v=$?

Solution.

Use the law of energy conservation. Electrons are accelerated to a speed v by the electric field. So, the kinetic energy of electrons $\frac{1}{2} m v^{2}$ is equal to the energy of charge q moving through a potential difference U :

$$
\frac{1}{2} m v^{2}=q U
$$

Therefore,

$$
v=\sqrt{\frac{2 q U}{m}}
$$

Calculate:

$$
v=\sqrt{\frac{2 \cdot 1.6 \cdot 10^{-19} \cdot 2 \cdot 10^{4}}{9.11 \cdot 10^{-31}}}=\sqrt{70.25 \cdot 10^{14}}=8.38 \cdot 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer.

$v=\sqrt{\frac{2 q U}{m}}=8.38 \cdot 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}}$

