Answer on Question \#46004-hysics-Electromagnetism

An ammeter is suspected of giving inaccurate readings. In order to confirm the readings, the ammeter is connected to a silver voltmeter in series and a steady current is passed for one hour. The ammeter reads $I_{0}=0.56 A$ and $m=2.0124 \mathrm{~g}$ of silver is deposited. By what percentage is the ammeter reading incorrect?

Solution

$$
m=\frac{Q}{C} \frac{A}{v},
$$

where m is the mass of silver, Q is charge transferred, $A=108 \frac{\mathrm{~kg}}{\mathrm{kmol}}$ is atomic weight of silver, $C=9.65$. $10^{7} \frac{\mathrm{C}}{\text { kmol }} v$ is valence.

$$
\begin{gathered}
m=\frac{Q}{C} \frac{A}{v} \rightarrow m=\frac{I t}{C} \frac{A}{v} \rightarrow 2.0124 \cdot 10^{-3}=\frac{I \cdot 3600}{9.65 \cdot 10^{7}}\left(\frac{108}{1}\right) \rightarrow I=0.50 A . \\
\frac{\left|I-I_{0}\right|}{I}=\frac{0.56-0.50}{0.50}=12 \% \text { error. }
\end{gathered}
$$

Answer: 12\%.

