Answer on Question #45988-Physics-Electromagnetism

Battery of e.m.f. $\mathcal E$ and negligible internal resistance is connected to two resistors of resistances R_1 and R_2 as shown in the figure. What is the potential difference across the resistor of resistance R_2 .

Solution

Two resistors of resistances must be connected in series, because from parallel connection we know $U_1=U_2=\mathcal{E}.$

According Kirchhoff law:

$$\mathcal{E} - IR_1 - IR_2 = 0 \to I = \frac{\mathcal{E}}{R_1 + R_2},$$

where I is the current.

The potential difference across the resistor of resistance R_2 :

$$U_2 = IR_2 = \frac{\mathcal{E}R_2}{R_1 + R_2}.$$

Answer: $\frac{\mathcal{E}R_2}{R_1+R_2}$