Answer on Question \#45986 - Physics - Electromagnetism

Question.

Charges of +2 C and -2 C are situated at points P and Q respectively which are at a distance apart. A point X is mid-way between P and Q. Which of the following correctly describes the electric field and the electric potential at point X ?
electric field is toward Q, electric potential is zero electric field is toward Q, electric potential is negative electric field is toward P, electric potential zero electric field is toward P, electric potential is positive
$q_{1}=2 C$
$q_{2}=-2 C$

Solution.

By definition the electric field created by point charge is defined the following:

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \sim \frac{q}{r^{2}}
$$

And the potential is defined as:

$$
\varphi=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r} \sim \frac{q}{r}
$$

Let use the superposition principle for the electric field and electric potential:

$$
\begin{gathered}
E=\left|E_{1}\right|+\left|E_{2}\right| \\
\varphi=\varphi_{1}+\varphi_{2}
\end{gathered}
$$

In the middle point (the distance from each charge to middle point is d) we will receive the following:

$$
\begin{gathered}
E \sim \frac{q_{1}+\left|q_{2}\right|}{d^{2}} \\
\varphi \sim \frac{q_{1}+q_{2}}{d}=0
\end{gathered}
$$

So, we can see that potential will be equal zero in the middle point between the charges q_{1} and q_{2}. And we know that electric field is directed from positive charge to negative charge. In our case, electric field is directed to point Q , where negative charge q_{2} is situated.

Thus, answer is the following: electric field is toward Q, electric potential is zero.

Answer.

electric field is toward Q, electric potential is zero

