Answer on Question \#45984 - Physics - Electromagnetism

Question.

A uniform electric field of $200 \mathrm{~N} / \mathrm{C}$ is in the x-direction. A point charge of $3 \mu \mathrm{C}$ is released from rest at the origin. What is the kinetic energy of the charge when it is at $x=4 \mathrm{~m}$?

Given:

$E=200 \frac{N}{C}$
$q=3 \mu C=3 \cdot 10^{-6} C$
$l=4 m$
Find:
$W=?$

Solution.

By definition the kinetic energy is:

$$
W=F \cdot l
$$

We consider that $l=4 m$, because the distance from the origin to $x=4$ will be 4 meters. Force, which acts on the charge q by the electric field, is equal to:

$$
F=q E
$$

So, the kinetic energy of the charge is equal to:

$$
W=F \cdot l=q \cdot E \cdot l
$$

Calculate:

$$
W=3 \cdot 10^{-6} \cdot 200 \cdot 4=2.4 \cdot 10^{-3} \mathrm{~J}
$$

Answer.

$W=q \cdot E \cdot l=2.4 \cdot 10^{-3} \mathrm{~J}$

