Answer on Question \#45874 - Physics - Astronomy | Astrophysics
For solving this problem we need $3^{\text {rd }}$ reduced Kepler's law: if there is two planets are rotating around the same star, we can express ratio between mean distances planet-star and its' orbital period for them

$$
\begin{equation*}
\frac{D^{3}{ }_{m 1}}{D^{3}{ }_{m 2}}=\frac{T^{2}{ }_{1}}{T^{2}{ }_{2}} \tag{1}
\end{equation*}
$$

Where $T$ - period, $D_{m}$ - mean distance planet-star. For Mars we get

$$
D_{M}=1+D_{\text {Mars-Earth }}=1+0.5=1.5 \text { a.u. }
$$

For Jupiter

$$
D_{J}=1+D_{\text {Jupiter-Earth }}=1+4=5 \text { a.u. }
$$

Transforming formula (1)

$$
T_{j}=T_{j} \sqrt{\frac{D_{J}^{3}}{D_{M}^{3}}}=687 \times \sqrt{\frac{125}{3.375}}=687 \times 6.086=4181.08 \mathrm{days}
$$

