Answer on Question 45848, Physics, Mechanics | Kinematics | Dynamics

Two particles of each rest mass 3×10 (to the power -25) kg approaching each other in head on collision. If each particle has an initial velocity of 2×10 (to the power 8) m / s, calculate the velocity of one particle as run by the other

Solution:

Let $v_{1}(0)$ and $v_{2}(0)$ be the initial velocities of first and second particle respectively. In current case, $v_{1}(0)=v_{0} ; v_{2}(0)=-v_{0}$, where $v_{0}=2 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$.
Let the velocities of the particles after collision be v_{1} and v_{2}.
Using law of conservation of linear momentum, obtain $m\left[v_{1}(0)+v_{2}(0)\right]=m\left(v_{1}+v_{2}\right)$, where the left side is equal to zero because $v_{1}(0)=v_{0} ; v_{2}(0)=-v_{0}$, hence $v_{1}=-v_{2}$.
Using law of conservation of energy, obtain $m\left[v_{1}^{2}(0)+v_{2}^{2}(0)\right]=m\left\lfloor v_{1}^{2}+v_{2}^{2}\right\rfloor$. Substituting $v_{2}=-v_{1}$ into last equation, obtain $2 m v_{0}^{2}=2 m v_{1}^{2}$, therefore $v_{1}=-v_{0}$ and $v_{2}=-v_{1}=v_{0}$.
Thus, after collision, particles move in their opposite directions with the same speeds as their initial ones.

