Answer on Question \#45842-Physics-Mechanics-Kinematics-Dynamics

$m=0.2 \mathrm{~kg}$ mass of body suspended by $l=1$ meter length of string if we displaced the body by using force at which the string make $\theta=30$ Degree angle with horizontal then find the work done against with gravity.

Solution

The work done against with gravity is the difference between final and initial gravitational potential energy:

$$
W=U_{f}-U_{i}
$$

Let initial gravitational potential energy be

$$
U_{i}=-m g l,
$$

where $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the acceleration due to the gravity.
Then final gravitational potential energy is

$$
U_{f}=-m g l \sin \theta
$$

The work done against with gravity is

$$
W=U_{f}-U_{i}=-m g l \sin \theta-(-m g l)=m g l(1-\sin \theta)=0.2 \cdot 10 \cdot 1\left(1-\sin 30^{\circ}\right)=1 \mathrm{~J} .
$$

Answer: 1 J .

