Answer on Question \#45767, Physics, Electromagnetism

Two charges $Q 1=500 \mu C$ and $Q 2=100 \mu C$ are located on the $X Y$ plane at the positions $\overrightarrow{r_{1}}=3 \vec{\jmath} \mathrm{~m}$ and $\overrightarrow{r_{2}}=4 \vec{\imath} m$. Find the force exerted on the Q2
a. $14.4 \vec{\imath}+10.8 \vec{\jmath} N$
b. $14.4 \vec{\imath}-10.8 \vec{\jmath} \mathbf{N}$
c. $10.8 \vec{\imath}-14.4 \vec{\jmath} \mathrm{~N}$
d. $10.8 \vec{\imath}+14.4 \vec{\jmath} N$

By the Coulomb law:

$$
\overrightarrow{F_{12}}=k \frac{Q_{1} Q_{2}}{r_{12}{ }^{2}} \frac{\overrightarrow{r_{12}}}{r_{12}}
$$

Where $\overrightarrow{r_{12}}=\overrightarrow{r_{2}}-\overrightarrow{r_{1}}=4 \vec{\imath}-3 \vec{\jmath}$
Distance between two charges:

$$
r_{12}=\sqrt{(3 \vec{\jmath})^{2}+(4 \vec{\imath})^{2}}=5 m
$$

Then:

$$
\overrightarrow{F_{12}}=9 \cdot 10^{9} \frac{N \cdot m^{2}}{C^{2}} \frac{500 \cdot 10^{-6} C \cdot 100 \cdot 10^{-6} C}{(5 m)^{2}} \frac{(4 \vec{\imath}-3 \vec{\jmath}) m}{5 m}=14.4 \vec{\imath}-10.8 \vec{\jmath} N
$$

Answer: force exerted on the Q_{2} is $\overrightarrow{F_{12}}=14.4 \vec{\imath}-10.8 \vec{\jmath} N$

