

Answer on Question #45766 – Physics – Electromagnetism

Question.

Two large horizontal metal plates are separated by 4 mm. The lower plate is at a potential of -6V. What potential should be applied to the upper plate to create electric field strength of 4000 V/m upwards in the space between the plates?

- a. +22V
- b. +10V
- c. -10V
- d. -22V

Given:

$$l = 4 \text{ mm} = 4 \cdot 10^{-3} \text{ m}$$

$$\varphi_1 = -6 \text{ V}$$

$$E = 4000 \frac{\text{V}}{\text{m}}$$

Find:

$$\varphi_2 = ?$$

Solution.

By definition the electric field is equal to:

$$E = \frac{\Delta\varphi}{l}$$

Electric field is defined by potential difference $\Delta\varphi = |\varphi_1 - \varphi_2|$. We know that electric field is directed from a higher potential to lower. In our case, electric field is directed upwards, from lower plate to upper plate. So, the potential of lower plate is bigger. That's why:

$$\varphi_1 > \varphi_2 \rightarrow \Delta\varphi = \varphi_1 - \varphi_2 \rightarrow E = \frac{\varphi_1 - \varphi_2}{l}$$

Therefore, we can find the potential of upper plate:

$$\varphi_2 = \varphi_1 - El$$

Calculate:

$$\varphi_2 = -6 - 4000 \cdot 4 \cdot 10^{-3} = -6 - 16 = -22 \text{ V}$$

So, answer is d. -22V.

Answer.

- d. -22V