Answer on Question \#45749 - Physics, Electric Circuits

A voltmeter connected across a 60 Hz ac source reads 240 V . Write down the expression of the instantaneous voltage as a function of time.

AC voltage could be expressed by sinusoidal wave equation:

$$
V=V_{\text {peak }} \sin (2 \pi v t)
$$

Where $V_{\text {peak }}$ - is an amplitude value of a voltage, v - is voltage frequency.
For the AC voltmeter will show RMS voltage:

$$
V_{r m s}=\frac{V_{p e a k}}{\sqrt{2}}
$$

Thus,

$$
V_{p e a k}=V_{r m s} \sqrt{2}=240 \mathrm{~V} \cdot \sqrt{2} \approx 339.4 \mathrm{~V}
$$

So, expression of the instantaneous voltage as a function of time:

$$
\begin{gathered}
V=339.4 \sin (2 \cdot 3.14 \cdot 60 H z \cdot t) \\
V=339.4 \sin (377 t)
\end{gathered}
$$

Answer: instantaneous voltage as a function of time:

$$
V=339.4 \sin (377 t)
$$

