

Answer on Question #45707, Physics, Electromagnetism

One end of a simple rectangular wire-loop current balance is inserted into a solenoid. A force of

$3.0 \times 10^{-3} \text{ N}$

is found to act on this end when a current of 2.0 A is flowing in it. If the length of the conductor forming the end of the wire-loop is 0.10 m . What is the magnetic flux density in the solenoid?

On the one hand, torque is applied to the frame equal :

$$M = I\phi$$

Where I is the current and ϕ is the flux

From the other hand this torque may be expressed as :

$$M = F * l$$

Where F is the force that act on the one side of frame and l is the one end side length

Also use that fact that flux going through full frame than it's density may be calculated as

$$\beta = \frac{\phi}{S} = \frac{\phi}{l^2}$$

Where β is the flux density , S is the frame square.

Than we have :

$$\beta = \frac{F * l}{I * l^2} = \frac{F}{I * l} = \frac{3 * 10^{-3} \text{ N}}{2 \text{ A} * 0.1 \text{ m}} = 1.5 * 10^{-2} \frac{\text{Wb}}{\text{m}^2}$$