

Answer on Question #45704, Physics, Electromagnetism

A small object has charge Q . Charge q is removed from it and placed on a second small object. The two objects are placed 1 m apart. For the force that each object exerts on the other to be a maximum, q should be:

From the Coulomb law force will be :

$$|F_{Qq}| = k \frac{q * (Q - q)}{r^2}$$

Where r is the distance between the charges and k some constant (it depends from the units system) . Maximum analysis include derivative investigation :

Where derivative equals to zero there will be maximum or minimum.

Take derivative above the q

$$|F_{Qq}|' = \left(k \frac{q * (Q - q)}{r^2} \right)' = k \frac{(Q - 2q)}{r^2}$$

And then equate to zero :

$$k \frac{(Q - 2q_x)}{r^2} = 0$$

$$q_x = \frac{Q}{2}$$