

Answer on Question #45691 – Physics - Mechanics | Kinematics | Dynamics

An object moves with constant acceleration 4.15 m/s^2 and over a time interval reaches a final velocity of 10.4 m/s .

(a) If its original velocity is 5.20 m/s , what is its displacement during the time interval?

m

(b) What is the distance it travels during this interval?

(c) If its initial velocity is
 -5.20 m/s ,
what is its displacement during this interval?

(d) What is the total distance it travels during the interval in part (c)?

Solution:

(a)

$V_1 = 5.2 \frac{\text{m}}{\text{s}}$ – initial velocity of the object;

$V_2 = 10.4 \frac{\text{m}}{\text{s}}$ – final velocity of the object;

$a = 4.15 \frac{\text{m}}{\text{s}^2}$ – acceleration;

T – time of travelling;

d – displacement during time T ;

Rate equation for the object:

$$T = \frac{V_2 - V_1}{a} \quad (1)$$

Equation of motion for the object:

$$\begin{aligned} d &= V_1 T + \frac{a T^2}{2} = T \left(V_1 + \frac{a T}{2} \right) = \frac{V_2 - V_1}{a} \left(V_1 + \frac{V_2 - V_1}{2} \right) = \frac{V_2 - V_1}{a} \left(\frac{V_1 + V_2}{2} \right) = \\ &= \frac{V_2^2 - V_1^2}{2a} = \frac{\left(10.4 \frac{\text{m}}{\text{s}} \right)^2 - \left(5.2 \frac{\text{m}}{\text{s}} \right)^2}{2 \cdot 4.15 \frac{\text{m}}{\text{s}^2}} = 9.8 \text{ m} \end{aligned}$$

(b)

Here the distance = displacement = 9.8 m because there wasn't change in moving direction during time T .

(c)

$V_3 = -5.2 \frac{\text{m}}{\text{s}}$ – initial velocity of the object;

$V_4 = 10.4 \frac{\text{m}}{\text{s}}$ – final velocity of the object;

t_2 – time of travelling;

d_2 – displacement during time t_2 ;

$$t_2 = \frac{V_4 - V_3}{a} \quad (1)$$

Equation of motion for the object:

$$d = V_3 t_2 + \frac{at_2^2}{2} = t_2 \left(V_3 + \frac{at_2}{2} \right) = \frac{V_4 - V_3}{a} \left(V_3 + \frac{V_4 - V_3}{2} \right) = \frac{V_4 - V_3}{a} \left(\frac{V_3 + V_4}{2} \right) =$$

$$= \frac{V_4^2 - V_3^2}{2a} = \frac{\left(10.4 \frac{m}{s} \right)^2 - \left(-5.2 \frac{m}{s} \right)^2}{2 \cdot 4.15 \frac{m}{s^2}} = 9.8 \text{ m}$$

(d)

$a = 4.15 \frac{m}{s^2}$ – acceleration;

$V_1 = -5.2 \frac{m}{s}$ – initial velocity of the object;

t_1 – time of first part travelling;

d_1 – displacement during time t_2 ;

$V_2 = 0$ – zero velocity;

t_2 – time of second part travelling;

$V_3 = 10.4 \frac{m}{s}$ – final velocity of the object;

The total distance here will be different, thus we can split the movement of the object into 2 parts :

1) when it starts at $-5.2 \frac{m}{s}$ then stops to change direction

Rate equation of the object:

$$V_2 = V_1 + at_1 = 0$$

$$t_1 = \frac{V_1}{a}$$

Equation of motion for the object:

$$d_1 = V_1 t_1 - \frac{at_1^2}{2} = \frac{V_1^2}{a} - \frac{V_1^2}{2a} = \frac{V_1^2}{2a} = \frac{\left(-5.2 \frac{m}{s} \right)^2}{2 \cdot 4.15 \frac{m}{s^2}} = 3.26 \text{ m}$$

2) the distance object passes till its velocity becomes $V_3 = 10.4 \frac{m}{s}$

Rate equation of the object:

$$V_3 = V_2 + at_2$$

$$t_2 = \frac{V_3}{a}$$

Equation of motion for the object:

$$d_2 = V_2 t_2 + \frac{at_2^2}{2} = 0 + \frac{at_2^2}{2} = \frac{a}{2} \left(\frac{V_3}{a} \right)^2 = \frac{V_3^2}{2a} = \frac{\left(10.4 \frac{m}{s} \right)^2}{2 \cdot 4.15 \frac{m}{s^2}} = 13.03 \text{ m}$$

Total distance = $3.26 \text{ m} + 13.03 \text{ m} = 16.3 \text{ m}$

Answer: a) 9.8 m

b) 9.8 m

c) 9.8 m

d) 16.3 m