

Answer on Question #45662, Physics, Electromagnetism

The electron beam in a television tube consists of electrons accelerated from rest through a potential difference of about $20\ 000V$. What is the speed of the electrons? (Ignore relativistic effects). Electron rest mass is $9.11 * 10^{-31}kg$ and electronic charge is $1.6 * 10^{-19}C$.

- a. $8.4 * 10^7 \frac{m}{s}$
- b. $3.8 * 10^6 \frac{m}{s}$
- c. $6 * 10^6 \frac{m}{s}$
- d. $4.7 * 10^7 \frac{m}{s}$

Solution.

Kinetic energy of electron accelerated from rest is equal to its potential energy change.

$$\frac{m_e v_e^2}{2} = q_e V$$

$m_e = 9.11 * 10^{-31}kg$ – electron rest mass;

$q_e = 1.6 * 10^{-19}C$ – electronic charge;

$V = 20\ 000 V$ – potential difference;

$v_e = ? \frac{m}{s}$ – the speed of the electrons;

From the equation:

$$v_e^2 = \frac{q_e V}{m_e}$$

$$v_e = \sqrt{\frac{q_e V}{m_e}} = \sqrt{\frac{1.6 * 10^{-19} * 20\ 000}{9.11 * 10^{-31}}} = 0.84 * 10^8 = 8.4 * 10^7 \frac{m}{s}$$

Answer: the electron speed is a $8.4 * 10^7 \frac{m}{s}$.