Answer on Question \#45659, Physics, Optics

Derive linear circular polarized light from the equation of an ellipse.

Solution:

Suppose that a plane polarized light beam of amplitude A is incident on a uniaxial crystal at an angle θ. Let $A \cos \theta$ and $A \sin \theta$ be the amplitudes of E-ray and O-ray respectively. If δ be the phase difference between the two emergent beams, then their vibrations can be expressed as

For E-ray: $\quad x=A \cos \theta \sin (\omega t+\delta)=a \sin (\omega t+\delta)$
For O-ray: $y=A \sin \theta \sin \omega t=b \sin \omega t$
where $a=A \cos \theta$ and $b=A \sin \theta$

From second equation we have:

$$
\frac{y}{b}=\sin \omega t
$$

Hence $\quad \cos \omega t=\sqrt{1-\sin ^{2} \omega t}=\sqrt{1-\frac{y^{2}}{b^{2}}}$
From first eqation we have:

$$
x=a \sin (\omega t+\delta)=a(\sin \omega t \cos \delta+\cos \omega t \sin \delta)
$$

or,

$$
\frac{x}{a}=\sin \omega t \cos \delta+\cos \omega t \sin \delta=\frac{y}{b} \cos \delta+\sqrt{1-\frac{y^{2}}{b^{2}}} \sin \delta
$$

or,

$$
\frac{x}{a}-\frac{y}{b} \cos \delta=\sqrt{1-\frac{y^{2}}{b^{2}}} \sin \delta
$$

Squaring and rearranging, we get:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{2 x y}{a b} \cos \delta=\sin ^{2} \delta
$$

This is the general equation of an ellipse.

Spesial cases:

1. When $\delta=0 \sin \delta=0$ and $\cos \delta=1$, therefore

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{2 x y}{a b} \cos 0=\sin ^{2} 0
$$

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{2 x y}{a b}=0 \\
{\left[\frac{x}{a}-\frac{y}{b}\right]^{2}=0}
\end{gathered}
$$

or,

$$
y=\frac{b}{a} x
$$

This is the equation of a straight line. In this case, the emergent light is plane polarized.

