Answer on Question \#45567, Physics, Molecular Physics | Thermodynamics

A 0.5 kg piece of metal ($c=600 \mathrm{~J} / \mathrm{kgK}$) at 300 degrees Celsius is dumped into a large pool of water at 20 degree Celsius. Assuming the change in temperature of water to be negligible, calculate the overall change in entropy for the system.

Solution:

Given:

$$
\begin{aligned}
& m=0.5 \mathrm{~kg} \\
& c=600 \frac{\mathrm{~J}}{\mathrm{kgK}^{\prime}} \\
& T_{1}=300^{\circ} \mathrm{C}=573 \mathrm{~K} \\
& T_{2}=20^{\circ} \mathrm{C}=293 \mathrm{~K} \\
& \Delta S=?
\end{aligned}
$$

The change in entropy $S_{f}-S_{i}$ of a system during a process that takes the system from an initial state i to a final state f as

$$
\Delta S=S_{f}-S_{i}=\int_{i}^{f} \frac{d Q}{T}
$$

The assumption that piece of metal has a constant heat capacity allows us to integrate this equation giving

$$
\Delta S=\int_{1}^{2} \frac{c m}{T} d T=c m \int_{1}^{2} \frac{d T}{T}=c m \ln \left(\frac{T_{2}}{T_{1}}\right)
$$

In this calculation the temperature must be in kelvins.
We can apply this equation to piece of metal, here using units of kelvins for the heat capacity.

$$
\Delta S_{1}=c m \ln \left(\frac{T_{2}}{T_{1}}\right)=600 \cdot 0.5 \cdot \ln \left(\frac{293}{573}\right)=-201.214 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

Assuming the change in temperature of water to be negligible, we can calculate change in entropy for the large pool of water

$$
\Delta S_{2}=\frac{\Delta Q}{T_{2}}=\frac{c m \Delta T}{T_{2}}=\frac{c m\left(T_{1}-T_{2}\right)}{T_{2}}
$$

ΔQ is the amount of heat received from the piece of metal.

$$
\Delta S_{2}=\frac{600 \cdot 0.5 \cdot(573-293)}{293}=286.689 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

The overall change in entropy for the system is the sum of these two entropy changes

$$
\Delta S=\Delta S_{1}+\Delta S_{2}=-201.214+286.689=85.475 \approx 85.5 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

Answer: $\quad \Delta S=85.5 \frac{\mathrm{~J}}{\mathrm{~K}}$.

