Answer on Question \#45566 - Physics - Molecular Physics | Thermodynamics

Question:

A 0.5 kg piece of metal ($\mathrm{c}=600 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$) at 300 degrees celsius is dumped into a large pool of water at 20 degrees celsius. Assuming the change in temperature of water to be negligible, calculate the overall change in entropy for the system.

Answer:

According to the Second Law of thermodynamics for the reversible processes: $\mathrm{dS}=\frac{\delta Q}{\mathrm{~T}}$
We assume that piece of metal undergoes an internally reversible heat transfer such that:

$$
\mathrm{dS}=\frac{\mathrm{dQ}}{\mathrm{~T}}=\frac{\mathrm{m} \cdot \mathrm{c} \cdot \mathrm{dT}}{\mathrm{~T}} ;
$$

The assumption that piece of metal has a constant heat capacity allows us to integrate this equation: $\quad S_{S_{1}} \mathrm{dS}={ }_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{\mathrm{~m} \cdot \mathrm{c} \cdot \mathrm{dT}}{\mathrm{T}} ; \quad \quad \Delta \mathrm{S}_{\mathrm{Me}}=\left.\mathrm{m} \cdot \mathrm{c} \cdot \ln \mathrm{T}\right|_{\mathrm{T}_{1}} ^{\mathrm{T}_{2}}=\mathrm{m} \cdot \mathrm{c} \cdot \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$;

This formula uses absolute temperature T in kelvins. We can apply this equation to piece of metal:

$$
\Delta \mathrm{S}_{\mathrm{Me}}=0.5 \mathrm{~kg} \cdot 600 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot \ln \frac{293 \mathrm{~K}}{573 \mathrm{~K}}=-201.2 \frac{\mathrm{~J}}{\mathrm{~K}} ;
$$

Assuming the change in temperature of water in the pool to be negligible, we can calculate the change in entropy for it:

$$
\Delta \mathrm{S}_{\mathrm{w}}=\frac{\Delta \mathrm{Q}}{\mathrm{~T}_{2}}=\frac{\mathrm{m} \cdot \mathrm{c} \cdot \Delta \mathrm{~T}}{\mathrm{~T}_{2}}
$$

$$
\Delta \mathrm{S}_{\mathrm{w}}=0.5 \mathrm{~kg} \cdot 600 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot \frac{(573-293) \mathrm{K}}{293 \mathrm{~K}}=286.7 \frac{\mathrm{~J}}{\mathrm{~K}} ;
$$

The total change in entropy for the system is equal to the sum of these two entropy changes:

$$
\Delta \mathrm{S}=\Delta \mathrm{S}_{\mathrm{Me}}+\Delta \mathrm{S}_{\mathrm{w}}=-201.2+286.7=85.5 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

Answer: $\quad \Delta \mathrm{S}=85.5 \frac{\mathrm{~J}}{\mathrm{~K}}$

