

Answer on Question #45544, Physics, Quantum Mechanics

If the function ψ_1 and ψ_2 are solution of Schrodinger wave equation for a particle , then prove that $a_1\psi_1 + a_2\psi_2$ is also a solution of same equation, where a_1 and a_2 are arbitrary constants.

Solution

see on next page.

Linearity in $\Psi(x,t)$: A linear combination $\Psi(x,t)$ of two solutions $\Psi_1(x,t)$ and $\Psi_2(x,t)$ is also a solution. $\Psi(x,t) = c_1\Psi_1(x,t) + c_2\Psi_2(x,t)$ E₃

$\Psi_1(x,t)$ is a solution and thus satisfies: E₁

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi_1(x,t)}{\partial x^2} + V(x,t)\Psi_1(x,t) = i\hbar \frac{\partial \Psi_1(x,t)}{\partial t}$$

$\Psi_2(x,t)$ is a solution and thus satisfies: E₂

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi_2(x,t)}{\partial x^2} + V(x,t)\Psi_2(x,t) = i\hbar \frac{\partial \Psi_2(x,t)}{\partial t}$$

Add Eqs. E₁ and E₂ together as $c_1E_1 + c_2E_2$:

$$c_1 \left[-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi_1(x,t)}{\partial x^2} + V(x,t)\Psi_1(x,t) \right] + c_2 \left[-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi_2(x,t)}{\partial x^2} + V(x,t)\Psi_2(x,t) \right] = c_1 \left[i\hbar \frac{\partial \Psi_1(x,t)}{\partial t} \right] + c_2 \left[i\hbar \frac{\partial \Psi_2(x,t)}{\partial t} \right]$$

Rearrange a bit:

$$-\frac{\hbar^2}{2m} \left[c_1 \frac{\partial^2 \Psi_1(x,t)}{\partial x^2} + c_2 \frac{\partial^2 \Psi_2(x,t)}{\partial x^2} \right] + V(x,t) [c_1\Psi_1(x,t) + c_2\Psi_2(x,t)] = i\hbar \left[c_1 \frac{\partial \Psi_1(x,t)}{\partial t} + c_2 \frac{\partial \Psi_2(x,t)}{\partial t} \right]$$

Differentiation is linear:

$$-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} [c_1\Psi_1(x,t) + c_2\Psi_2(x,t)] + V(x,t) [c_1\Psi_1(x,t) + c_2\Psi_2(x,t)] = i\hbar \frac{\partial}{\partial t} [c_1\Psi_1(x,t) + c_2\Psi_2(x,t)]$$

Substitute Eqn. E₃ to recover the Schrödinger equation for $\Psi(x,t)$ thus showing that $\Psi(x,t)$ is also a solution. $-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x,t)\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}$

Figure 1: a