Answer on Question #45544, Physics, Quantum Mechanics

If the function ψ_1 and ψ_2 are solution of Schrodinger wave equation for a particle, then prove that $a_1\psi_1+a_2\psi_2$ is also a solution of same equation, where a_1 and a_2 are arbitrary constants.

Solution

see on next page.

Linearity in \Psi(\mathbf{x},\mathbf{t}): A linear combination $\Psi(\mathbf{x},\mathbf{t})$ of two solutions $\Psi_1(\mathbf{x},\mathbf{t})$ and $\Psi_2(\mathbf{x},\mathbf{t})$ is also a solution. $\Psi(x,t) = c_1\Psi_1(x,t) + c_2\Psi_2(x,t)$

$$\begin{array}{lll} \Psi_{\mathbf{1}}(\mathbf{x},\mathbf{t}) \text{ is a solution and thus satisfies:} & \mathbf{E_{\mathbf{1}}} \\ -\frac{\hbar^2}{2m}\frac{\partial^2\Psi_{\mathbf{1}}(x,t)}{\partial x^2} \ + \ V(x,t)\Psi_{\mathbf{1}}(x,t) \ = \ i\hbar\frac{\partial\Psi_{\mathbf{1}}(x,t)}{\partial t} \end{array} \\ \begin{array}{lll} \Psi_{\mathbf{2}}(\mathbf{x},\mathbf{t}) \text{ is a solution and thus satisfies:} & \mathbf{E_{\mathbf{2}}} \\ -\frac{\hbar^2}{2m}\frac{\partial^2\Psi_{\mathbf{2}}(x,t)}{\partial x^2} \ + \ V(x,t)\Psi_{\mathbf{2}}(x,t) \ = \ i\hbar\frac{\partial\Psi_{\mathbf{2}}(x,t)}{\partial t} \end{array}$$

$$\begin{array}{l} \text{Add Eqs. } \mathbf{E_1} \text{ and } \mathbf{E_2} \text{ together as } \mathbf{c_1} \mathbf{E_1} + \mathbf{c_2} \mathbf{E_2} \\ c_1 \left[-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi_1(x,t)}{\partial x^2} + V(x,t) \Psi_1(x,t) \right] + c_2 \left[-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi_2(x,t)}{\partial x^2} + V(x,t) \Psi_2(x,t) \right] \\ \end{array} \\ = c_1 \left[i\hbar \frac{\partial \Psi_1(x,t)}{\partial t} \right] + c_2 \left[i\hbar \frac{\partial \Psi_2(x,t)}{\partial t} \right] + c_3 \left[i\hbar \frac{\partial \Psi_2(x,t)}{\partial t} \right] + c_4 \left[i\hbar \frac{\partial \Psi_2(x,t)}{\partial t} \right] + c_4 \left[i\hbar \frac{\partial \Psi_2(x,t)}{\partial t} \right] + c_4 \left[i\hbar \frac{\partial \Psi_2(x,t)}{\partial t} \right] + c_5 \left[i\hbar \frac{\partial \Psi$$

Rearrange a bit

$$-\frac{\hbar^2}{2m}\left[c_1\frac{\partial^2\Psi_1(x,t)}{\partial x^2}+c_2\frac{\partial^2\Psi_2(x,t)}{\partial x^2}\right]+V(x,t)\left[c_1\Psi_1(x,t)+c_2\Psi_2(x,t)\right] \ = \ i\hbar\left[c_1\frac{\partial\Psi_1(x,t)}{\partial t}+c_2\frac{\partial\Psi_2(x,t)}{\partial t}\right]$$

Differentiation is linear:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\left[c_1\Psi_1(x,t) + c_2\Psi_2(x,t)\right] + V(x,t)\left[c_1\Psi_1(x,t) + c_2\Psi_2(x,t)\right] \ = \ i\hbar\frac{\partial}{\partial t}\left[c_1\Psi_1(x,t) + c_2\Psi_2(x,t)\right]$$

Substitute Eqn. E₃ to recover the Schrödinger equation for $\Psi(\mathbf{x},\mathbf{t})$ thus showing that $\Psi(\mathbf{x},\mathbf{t})$ is also a solution. $-\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + V(x,t)\Psi(x,t) = i\hbar\frac{\partial\Psi(x,t)}{\partial t}$

Figure 1: a