Answer on Question \#45542 - Physics - Mechanics | Kinematics | Dynamics

If water is falling from a nul drop after drop. 1st drop has fallen on ground while 3rd drop is near to fall while 2nd drop is between somewhere distance between 1st and 3rd drop is 5 meter. What is distance between 2nd and 3rd drop?

We will assume that time t_{d} between drops is equal. Drops will pass distance:
1: $H=\frac{g t^{2}}{2} \rightarrow t=\sqrt{\frac{2 H}{g}}$
2: $S_{2}=\frac{g\left(t-t_{d}\right)^{2}}{2}$
$t=2 t_{d}$
Where $H=5 m$ - total height, S_{2} - distance from the $3^{\text {rd }}$ drop to the $2^{\text {nd }}$ drop, t_{d}-time between drops, t - time after $1^{\text {st }}$ drop start falling.

From these equations, we will get:

$$
\begin{gathered}
S_{2}=\frac{g t^{2}}{8}=\frac{2 H g}{8 g}=\frac{H}{4} \\
S_{2}=\frac{5 m}{4}=1.25 \mathrm{~m}
\end{gathered}
$$

Answer: distance between $2^{\text {nd }}$ and $3^{\text {rd }}$ drop is $1.25 m$

