Answer on Question \#45540 - Physics - Other

Question.

Two small glass spheres of masses 10 g and 20 g are moving in a straight line in the same direction with velocities of $3 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$ respectively. They collide with each other and after collision, glass sphere of mass 10 g moves with a velocity of $2.5 \mathrm{~m} / \mathrm{s}$. Find the velocity of the second ball after collision.

Given:
$m_{1}=10 \mathrm{~g}=0.01 \mathrm{~kg}$
$m_{2}=12 \mathrm{~g}=0.02 \mathrm{~kg}$
$v_{1}=3 \frac{\mathrm{~m}}{\mathrm{~s}}$
$v_{2}=2 \frac{\mathrm{~m}}{\mathrm{~s}}$
$v_{1}^{\prime}=2.5 \frac{\mathrm{~m}}{\mathrm{~s}}$
Find:
$v^{\prime}{ }_{2}=$?

Solution.

By definition the momentum is:

$$
p=m v
$$

The law of conservation of momentum:

$$
\begin{gathered}
p_{0}^{\text {system }}=p^{\text {system }} \\
p_{0}^{\text {system }}=m_{1} v_{1}+m_{2} v_{2} \\
p^{\text {system }}=m_{1} v^{\prime}{ }_{1}+m_{2} v^{\prime}{ }_{2}
\end{gathered}
$$

So,

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}
$$

Therefore,

$$
v_{2}^{\prime}=\frac{m_{1} v_{1}+m_{2} v_{2}-m_{1} v_{1}^{\prime}}{m_{2}}
$$

Calculate:

$$
v_{2}^{\prime}=\frac{0.03+0.04-0.025}{0.02}=\frac{0.045}{0.02}=2.25 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer.

$$
v_{2}^{\prime}=\frac{m_{1} v_{1}+m_{2} v_{2}-m_{1} v_{1}^{\prime}}{m_{2}}=2.25 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

