

Answer on Question #45492, Physics, Atomic Physics

An electron in the $n = 6$ level of an H atom emits a photon of wavelength 2626 nm. To what energy level does it move?

Solution:

We use the Rydberg formula for hydrogen

$$\frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Where λ is the wavelength of electromagnetic radiation emitted in vacuum,

R is the Rydberg constant, approximately $1.097 \times 10^7 \text{ m}^{-1}$,

n_1 and n_2 are integers greater than or equal to 1 such that $n_1 < n_2$.

In our case $\lambda = 2626 \times 10^{-9} \text{ m}$, $n_2 = 6$ and $n_1 = ?$.

$$\frac{1}{n_1^2} = \frac{1}{R\lambda} + \frac{1}{n_2^2} = \frac{1}{1.097 \cdot 10^7 \cdot 2626 \cdot 10^{-9}} + \frac{1}{6^2} = 0.0347 + \frac{1}{36} = 0.0625$$

Thus,

$$n_1^2 = \frac{1}{0.0625} = 16$$

So,

$$n_1 = 4$$

Answer: $n_1 = 4$.