Answer on Question \#45448, Physics, Mechanics - Kinematics - Dynamics

Please convert 1100 kPa into $\mathrm{kg} / \mathrm{m} * \mathrm{~s}^{2}$ and $\mathrm{kg} / \mathrm{km} * \mathrm{~s}^{2}$
also this question:
At 45degree latitude, gravitational acceleration as a function of of elevation z above sea level is given by $\mathrm{g}=\mathrm{a}-\mathrm{bz}$ where $\mathrm{a}=9.807 \mathrm{~m} / \mathrm{s}^{2}$ and $\mathrm{b}=$ 3.32 E-6 $s^{-} 2$. Determine the height above sea level (z) where the weight of an object will decrease by 0.4%. find $\mathrm{z}=$? m
Solution

$$
1100 \mathrm{kPa}=1100 \cdot 10^{3} \mathrm{~kg} / \mathrm{m} * \mathrm{~s}^{2}=1100 \cdot 10^{6} \mathrm{~kg} / \mathrm{km} * \mathrm{~s}^{2}
$$

Question.
so we have

$$
g\left(z_{1}\right)=a \cdot 0.996
$$

Hence

$$
\begin{gathered}
g-a=g\left(z_{1}\right)-a \cdot 0.996=0.004 a=b z_{1} \\
0.004 \cdot 9.807=3.32 \cdot 10^{-6} z_{1} \\
z_{1}=\frac{0.004 \cdot 9.807}{3.32 \cdot 10^{-6}} \approx 11815.7 \mathrm{~m}
\end{gathered}
$$

Answer is $\mathrm{z}=11815.7 \mathrm{~m}$.

