Answer on Question \#45385, Physics, Molecular Physics | Thermodynamics

Task: A certain fluid at 10bar is contained in a cylinder behind a piston, the initial volume being $0.05 \mathrm{~m}^{\wedge} 3$. Calculate the work done by the fluid when it expands reversibly: 1. According to a linear law to a final volume of $0.2 \mathrm{~m}^{\wedge} 3$ and a final pressure of 2 bar. 2 according to a law, $p=\left(A / V^{\wedge} 2\right)-$ (B / V), to a final volume of $0.1 \mathrm{~m}^{\wedge} 3$ and a final pressure of 1 bar , where A and B are constants. Sketch the processes on a P-V diagram.

Solution:

$\mathrm{W}=\mathrm{Pdv}=\mathrm{P}(\mathrm{V} 2-\mathrm{V} 1)=1000 \mathrm{kPa} *(.2-.05)=150 \mathrm{~kJ}$
$\mathrm{W}=$ area under curve $\mathrm{so}=\mathrm{P} 2 * \mathrm{dv}+.5^{*} \mathrm{dv}^{*} \mathrm{dp}=200^{*} .15+.5^{*} .15^{*} 800=90 \mathrm{~kJ}$
$\mathrm{W}=\mathrm{P} 1 \mathrm{~V} 1 * \ln (\mathrm{~V} 2 / \mathrm{V} 1)=1000^{*} .05 * \ln (.1 / .05)=34.7 \mathrm{~kJ}$
$\mathrm{W}=(\mathrm{p} 2 \mathrm{v} 2-\mathrm{p} 1 \mathrm{v} 1) / 1-\mathrm{n}$ when $\mathrm{p} 2=\mathrm{p} 1^{*}(\mathrm{~V} 1 / \mathrm{V} 2)^{\wedge} 3=1.25$ bar
$W=\left(125^{*} .1-1000^{*} .05\right) /-2=18.75 \mathrm{~kJ}$

