Your science teacher has assigned you the task of building a water barometer. You have learned that the pressure of the atmosphere can vary by as much as 5% from 1 standard atmosphere as the weather changes.
(a) What minimum height must your barometer have?
(b) One stormy day the TV weather person says, "The barometric pressure this afternoon is a low 29.55 inches." What is the height of the water in your barometer?

Solution

We know, that the 1 atmosphere=101 325 Pa.
a) The pressure of 1.05 atm is equal to pressure of water column, which has height
$h=\frac{p}{g \rho}$
$\rho=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$p=1.05 * 101300 \mathrm{~Pa}$
$h=10.85 m$

Answer:

Barometer must have minimum height $h=10.85 m$
b) We have, that the mercury (the density of mercury is $\rho_{m}=13600 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$) in barometer has height $h_{m}=29.95$ inches $=76.07 s m=0.7607 m$

It is equal pressure $p=g \rho_{m} h_{m}=101390 P a$
It is equal pressure of water column, which has height $h_{w}=\frac{p}{g \rho}=10.36 m$.

Answer:

The height of water is

$$
h_{w}=10.36 m
$$

