Answer on Question \#45369, Physics, Mechanics | Kinematics | Dynamics

A 100 g mass on a 1.0 m long string is pulled 8.0° to one side and released. How long does it take for the pendulum to reach 4.0° on the opposite side?

Solution:

The motion of a simple pendulum is like simple harmonic motion.

For small amplitudes, the period (swing time "there and back") of such a pendulum can be approximated by:

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

where L is the length of the pendulum and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.
Thus, in our case

$$
T=2 \cdot 3.14 \sqrt{\frac{1.0}{9.81}}=2 \mathrm{~s}
$$

The time to reach equilibrium position from 8.0° is

$$
t_{0}=\frac{T}{4}=0.5 \mathrm{~s}
$$

The motion of a simple pendulum is like simple harmonic motion in that the equation for the angular displacement is

$$
\theta=\theta_{\max } \sin \sqrt{\frac{g}{L}} t
$$

The time to reach 4.0° from equilibrium position is

$$
t_{1}=\sqrt{\frac{L}{g}} \sin ^{-1}\left(\frac{\theta}{\theta_{\max }}\right)=\sqrt{\frac{1.0}{9.81}} \cdot \sin ^{-1}\left(\frac{4}{8}\right)=0.167 \approx 0.17 \mathrm{~s} .
$$

Thus, the time to reach 4.0° on the opposite side is

$$
t=t_{0}+t_{1}=0.5+0.17=0.67 \mathrm{~s}
$$

Answer: $t=0.67 \mathrm{~s}$.

