

Answer on Question#45361, Physics, Mechanics | Kinematics | Dynamics

a) Since the body is at rest at the table, the normal force is equal to gravitational force ($N=mg$). In order for block to move, the tension of the string must be bigger than the frictional force, which is $F_f=\mu N=\mu mg$, where μ is the coefficient of static friction.

For clean steel, this coefficient is equal to $\mu_1=0.74$. Hence, minimum string tension is

$$T=F_f=\mu mg \approx 14.52 N$$

b) First, let us find the acceleration of the block, if string tension is $20 N$. According to 2nd

$$\text{Newton's law, } a=\frac{F_{\text{net}}}{m}=\frac{F-\mu mg}{m}=\frac{F}{m}-\mu g \approx 2.74 \frac{m}{s^2}$$

Hence, velocity of the block as a function of time is $v(t)=at$. The displacement is

$$S(t)=\frac{at^2}{2} \text{. The time needed to move } S \text{ meters is } t=\sqrt{2 \frac{S}{a}}, \text{ thus velocity at that moment is}$$
$$v=a\sqrt{2 \frac{S}{a}}=\sqrt{2Sa} \approx 2.34 \frac{m}{s}$$

c) Using formulas from b) with coefficient of friction of lubricated steel $\mu_2=0.16$, obtain

$$a=8.43 \frac{m}{s^2} \text{ and } v=4.1 \frac{m}{s}$$